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Abstract We have developed an approach for simulta-

neous structure calculation and automatic Nuclear Over-

hauser Effect (NOE) assignment to solve nuclear magnetic

resonance (NMR) structures from unassigned NOESY

data. The approach, autoNOE-Rosetta, integrates Resolu-

tion Adapted Structural RECombination (RASREC)

Rosetta NMR calculations with algorithms for automatic

NOE assignment. The method was applied to two proteins

in the 15–20 kDa size range for which both, NMR and

X-ray data, is available. The autoNOE-Rosetta calculations

converge for both proteins and yield accurate structures

with an RMSD of 1.9 Å to the X-ray reference structures.

The method greatly expands the radius of convergence for

automatic NOE assignment, and should be broadly useful

for NMR structure determination.

Keywords Nuclear magnetic resonance � Automatic

NOE assignment � Structure determination

Introduction

Structure determination by nuclear magnetic resonance

(NMR) spectroscopy is largely driven by distance infor-

mation gathered through Nuclear Overhauser Effect (NOE)

spectroscopy. To use NOE data as distance restraints, the

NOE crosspeaks in multidimensional spectra have to be

assigned to individual atoms of the biomolecular system.

The NOE crosspeak assignment and structure generation

steps are usually performed in an integrated manner over

several iterations to maximize the number of conforma-

tional restraints, while guaranteeing self-consistency of all

distance restraints (Wüthrich 1986).

Chemical shift assignments of individual spins and the

positions of cross peaks in NOE spectra (peak-picking) can

often be obtained accurately without explicit 3D structural

modeling, whereas resolving the high ambiguity in NOE

cross peak assignments requires structural models. The

main challenge is thus, to obtain initial 3D structures

despite the high ambiguity and low-fidelity of initial

automatic NOE cross peak assignments. If accurate

enough, these initial 3D models can be used to start further

iterations of refinement of assignments and 3D models.

Resolution Adapted Structural RECombination (RAS-

REC) is an iterative sampling strategy for restraint guided

structure determination in ROSETTA (Lange and Baker

2012). As shown previously, RASREC requires less data

than standard algorithms to converge (Lange and Baker

2012) and has been shown to allow structure determination

for proteins up to 20 kDa from RDC and expert-assigned

backbone NOE data (Raman et al. 2010a). Using additional

ILV methyl–methyl NOE data, RASREC can determine

structures of proteins up to 40 kDa (Lange et al. 2012).

Most importantly, RASREC requires less NOE data and is

more robust against inaccurate restraints (Warner et al.
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2011; Lange et al. 2012). These properties make RASREC

an ideal partner for automatic NOE assignment methods, as

a considerable number of initial assignments are wrong and

ambiguity is high.

We sought to combine RASREC-Rosetta structure

determination with automatic NOE assignment methods

within the ROSETTA3 software suite. As starting point for

the NOE assignment algorithm, we took established algo-

rithms such as ARIA (Nilges 1993; Nilges et al. 1997;

Linge et al. 2003), AutoStruct (Huang et al. 2003) and

CANDID (Herrmann et al. 2002). Whereas CANDID is

implemented in the popular programs CYANA and UNIO,

ARIA and AutoStruct are part of program packages of the

same name. The general approach of these algorithms is

very similar. First, atoms are initially assigned to 2D, 3D or

4D NOESY crosspeaks based on the known chemical shift

resonances. This yields on the order of 10–20 initial

assignments for a typical 3D NOESY cross peak. Subse-

quently, all initial assignments of a given peak are ranked

according to different descriptors, including the chemical

shift compatibility, network anchoring (Herrmann et al.

2002), symmetry considerations, and compatibility with

preliminary structural models. The highest-ranking

assignment of a given cross peak yields a distance restraint.

If multiple high-ranking assignments get selected, they are

combined into an ambiguous restraint (Nilges 1993). In the

first structure calculation stage, all peaks for which

assignments can be found yield distance restraints. In

subsequent rounds of iterative refinement, peaks are

excluded if none of their assignments are compatible with

the preliminary 3D models.

To determine the upper-distance bound of a restraint,

various peak-calibration strategies have been proposed.

The simplest strategy fixes the upper distance bound to the

minimum distance required for NOE cross peaks to appear

in the spectrum. Most programs, however, set the upper

distance bound proportional to the inverse sixth root of the

peak intensity. The necessary proportionality constants are

iteratively fitted using either the preliminary structures or

fixed target values (Güntert et al. 1991; Herrmann et al.

2002). ARIA further uses a spin-diffusion correction

(Linge et al. 2004) to determine the upper distance bound

from the intensity.

Typically in structure calculations, a quadratic penalty

term is used for conformers violating the upper-distance

bound of a restraint (Brunger et al. 1998; Linge et al. 2003).

CS-Rosetta calculations with NOE restraint data were shown

to perform better, however, if the penalty term switches to a

linear slope at larger deviations (Raman et al. 2010b).

Recently, a log-harmonic penalty term was shown to

improve results in ARIA calculations (Bernard et al. 2011).

For iterative refinement of NOE assignments usually all

assigned distances that are significantly violated by the

preliminary models are removed (Nilges 1993; Herrmann

et al. 2002; Huang et al. 2003; Linge et al. 2003). The

obvious danger with this approach is to remove correct

information prematurely. To fully exploit the ability of

RASREC-Rosetta to obtain correct structures even with

limited and erroneous restraint data, we took care to give

RASREC sufficient time before non-fitting restraints are

explicitly removed. Erroneous restraints are only prob-

lematic in the final stages of RASREC (Stages V–VI),

where a converged fold undergoes rounds of refinement in

ROSETTA’s all-atom energy function. For all-atom

refinement nearly any number of wrong restraints will

cause severe frustration to the optimization process. During

the earlier, low-resolution RASREC stages (Stages I–IV),

however, erroneous restraints cause less frustration. Thus,

we assigned the following NOE assignment Phases to the

RASREC sampling stages: Phase I, consisting of Stages I–

IV, restraints are never removed; Phase II, a repetition of

Stages III–IV, restraints are removed if for a given atom-

pair the low-energy conformers converged on a precise

distance, which violates the restraint; Phase III, Stages V–

VI, all restraints that violate more than 50 % of the con-

formers are removed.

The NOE assignment algorithm is described in detail in

section ‘‘Automatic NOE Assignment’’ and its integration

with RASREC is described in section ‘‘Integration with

RASREC sampling’’. An extensive benchmark of the

method on 50 data sets is published elsewhere (Zhang et al.

2014). Whereas the benchmark study (Zhang et al. 2014)

focuses on the final accuracy of the structure calculations,

we focus here on analyzing how the algorithm proceeds

through the various stages of the calculation. To this pur-

pose we picked two illustrative structure calculations per-

formed for the two proteins, CtR107 and PsR293, whose

chemical shift assignments and NOE peak-lists had been

published by the North East Structural Genomics Consor-

tium (Mao et al. 2011), and were downloaded from their

website (http://psvs-1_4-dev.nesg.org/MR/dataset.html).

Note, that the two cases discussed here have been picked to

showcase the possible failure-cases of CYANA calcula-

tions and the improvement on such challenging cases

obtained with autoNOE-Rosetta. Clearly, these results are

not representative for the overall performance of the two

programs and the reader should thus refer to the full

benchmark study (Zhang et al. 2014).

Results and discussion

Automatic NOE assignment

The assignment process is illustrated as flow-chart in

Fig. 1. NOE crosspeaks are automatically matched against
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given chemical shift assignments to obtain initial assign-

ments. Scoring with various descriptors ranks assignments

of each cross peak to identify the most likely assignments.

From these, distance restraints are generated with upper

bounds proportional to calibrated peak intensities.

The automatic NOE assignment method is similar to and

inspired by the CANDID algorithm, originally published in

Ref. (Herrmann et al. 2002). To nevertheless provide full

documentation of the implementation in Rosetta, we

describe the algorithm here in detail. We choose here a

mathematical notation, which allows conveying the algo-

rithm exactly, without involving unnecessary details of its

implementation. Parameters that can be specified via the

command-line interface of ROSETTA are denoted in the

form P(cmdline-flag) where cmdline-flag will be replaced

by the strings of characters required to specify this

parameter on the command-line. The standard settings of

these parameters are given in Table 1 and a glossary of

terms is provided in Table 2.

Input data

Assignment starts from 2 to 4 dimensional NOESY cros-

speak lists, gd
l;pwhere d denotes the dimension, l the peak

list and p the cross peak within list l. Moreover, a list of

assignable resonances di is given as input data. Methyl

protons with identical chemical shifts are combined into a

single entry in the resonance list. Thus, we denote the set of

protons assigned to resonance i by atoms AðiÞ. To work

with 3D and 4D spectra, we denote the resonance index of

the label resonance (i.e., the heavy atom bound to proton(s)

of resonance i) by L(i). For convenient notation, we further

define Dl(d, i, j) as map of proton and label indices to the

respective dimension of the cross peak list l

Dlðd; i; jÞ ¼

i d ¼ dP1

LðiÞ d ¼ dL1

j d ¼ dP2

LðjÞ d ¼ dL2

8
>><

>>:

ð1Þ

where dP1, dP2, dL1 and dL2 denote the first and second

proton dimensions as well as the first and second label

dimension. The values of dP1, dP2, dL1 and dL2 are deter-

mined by the header of each individual peak-file.

Initial assignments

The goal of the automatic assignment module is to find

assignments Al,p(i, j) to protons in the resonance list such

that the frequencies gl,p
d match the respective proton and

label resonances. The match of resonance gl,p
d of the dth

Initial Assignment 

Delete Diagonal Peaks 

compute scores 

chemical shift 

local distance 
compliance 

decoy compliance 

symmetric peaks 

network anchoring 

3x 

calibrate 

eliminate peaks 

generate restraints 

3x 

Fig. 1 Illustration of the procedure used in the new NOE-assignment

module implemented in Rosetta 3.6

Table 1 Parameters used for automatic assignment

Parameter name Phase I Phase II Phase III

chemshift 0.5 0.5 0.5

symmetry 10 1 1

covalent 10 1 1

calibration_target 3.8 Å 0.1 0.1

calibration:max_nudging – 1.1 1.1

calibration:start_nudging – 0.1 0.1

calibration:stop_nudging – 0 0

calibration:cycles 1 3 1

calibration:ignore_eliminated_peaks False True False

calibration:max_noe_dist – – 5.5

network:vmin 0.1 0.1 0.1

network:vmax 1.0 1.0 1.0

network:reswise_high 4.0 4.0 4.0

network:reswise_min 1.0 0.5 0.5

network:atomwise_min 0.25 0.4 0.4

local_distviol:range – 90 % –

local_distviol:cutoff – 8.0 Å –

local_distviol:cutoff_buffer – 2.0 Å –

elim:distviol – 50 % 50 %

elim:dcut – – 0.1

elim:vmin 0.01 0.501 0.501

elim:max_assign 20 20 20
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spectral dimension of crosspeak p to chemical shift di of

resonance i is given by the following equation

Md
l;pðiÞ ¼

foldd
l ðdiÞ � gd

l;p

�
�
�

�
�
�

max(Dgd
l ;DdiÞ

ð2Þ

where the operator foldd
l ðdÞ ¼ ðd� ol;dÞmodulo swl;d þ ol;d

maps the chemical shift into the recorded spectral window

that starts at offset frequency ol,d and has the sweep width

swl,d. The tolerance Dgl
d is specified for each spectral

dimension in the NOESY peak list and the tolerance Ddi is

defined in the chemical shift list for each resonance indi-

vidually. Defining the bM as bM ¼ 1 : M\1; 0: elsef g an

assignment is given as logical AND over matches bM in each

dimension d of the peak-list l

Al;pði; jÞ ¼
Y

d

bMd
l;pðDlðd; i; jÞÞ: ð3Þ

Crosspeaks with diagonal assignment, i.e. l,p for which

Al,p(i,i) = 1 for any i, are excluded from further

consideration.

Volume contribution

The volume contribution Wl,p(i,j) of assignment (i,j) to

peak (l,p) is given as

Wl;pði; jÞ ¼ Al;pði; jÞCl;pði; jÞDl;pði; jÞ
minðSmax; Sl;pði; jÞVði; jÞNl;pði; jÞÞ;

ð4Þ

where C denotes the chemical shift score, D the decoy

compatibility score, S the symmetry score, V the covalent

compliance score, and N the network anchoring score

which are defined below. Further, Smax denotes a global

weight and an ensemble average over the given input

structures if available. The volume contribution is nor-

malized over all assignments of a crosspeak l,p.

Wl;pði; jÞ ¼
Wl;pði; jÞ

P
i;j Wl;pði; jÞ

Al;pði; jÞ ¼ 1

0 otherwise

8
<

:
ð5Þ

Since both, the network anchoring and the symmetry score,

depend on Wl;pði; jÞ, we iterate the computation of the

scores four times.

Chemical shift score The chemical shift score of an

assignment is given by

Cl;pði; jÞ ¼ exp � 1

2w2
C

X

d

Md
l;pðDlðd; i; jÞÞ2

 !

; ð6Þ

where wC is a globally specified weight P(chemshift).

Symmetric peaks The same proton–proton contact may

appear in several spectra or opposite the diagonal in the

same spectrum. If this is the case, the confidence into

matching assignments of corresponding crosspeaks should

be increased. To reflect this we compute

sL;Pði; jÞ ¼
X

ðl;pÞ6¼ðL;PÞ
Wl;pðj; iÞ þ

X

l; p
l 6¼ L

Wl;pðj; iÞ: ð7Þ

As the symmetry score depends on the volume contribution

itself, we compute the symmetry score iteratively. The final

score is given as

SL;Pði; jÞ ¼ max(1;PðsymmetryÞsL;Pði; jÞÞ: ð8Þ

Covalent compliance This score evaluates to P(covalent)

for a pair of protons if their distance is below 5.0 Å

according to some prior structural knowledge or 0 other-

wise. If no explicit structural knowledge is known

(default), the bonus P(covalent) is given for all intra-resi-

due protons and for the pair HA(k) - H (k ? 1), where k

denotes a residue position.

Vði; jÞ ¼
P distði; jÞ\5ÅðremovedÞ
P i and j in same residue

P HAðkÞ and Hðk þ 1Þ
0 else

8
>><

>>:

ð9Þ

Network anchoring The network anchoring score reflects

how many alternative pathways (i,k,j) exist to connect

resonances i and j via a third resonance k, whereas k has to

be in the same or a neighboring residue of either resonance

i or j (Herrmann et al. 2002).

The resonances in the same or neighboring residues of i

are denoted by set

NðiÞ ¼ k: Dseq(i; kÞ� 1 ^ k 6¼ if g; ð10Þ

where Dseq(i; jÞ � resnum(iÞ � resnum(jÞj j, and resnum(i)

denotes the residue number of the atom assigned to reso-

nance i. The direct connectivity

mði; kÞ ¼
X

l;p

Wl;pði; kÞ þWl;pðk; iÞ ð11Þ

accumulates all normalized volume contributions to peaks

that have assignments connecting resonances i and k. To

reduce noise we count only connectivities with a minimum

contribution Nmin � Pðnetwork:vminÞ
~mði; kÞ ¼ vði; kÞHðmði; kÞ � NminÞ ð12Þ

where H denotes the Heavyside function

HðxÞ ¼ 1 x [ 0

0 x� 0

�

ð13Þ
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Additionally, a network anchoring contribution Nmax �
Pðnetwork:vmaxÞ is given for NOEs that should be

present according to prior knowledge, i.e., V(i,k) [ 0,

and Nmin for all other resonances that are sequential or

intra-residue. The network anchoring score Nl,p is thus

given by

Nl;pði; jÞ ¼
X

k2N ið Þ
S
N jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nði; kÞnðk; jÞ

p
; ð14Þ

where we defined

nði; kÞ ¼ max ~mði; kÞ;NmaxHðVði; kÞÞð
þNminð1�HðVði; kÞÞÞHð2� Dseq(i; kÞÞÞ

ð15Þ

Decoy compatibility If no structures are available as input

this score is set to 1. Otherwise, the compatibility score is

computed for each input structure and averaged. To obtain

the score for a single input structure the proton–proton

distances are computed as

dist(i; jÞ ¼
X

t 2 A ið Þ
s 2 A jð Þ

dist(t; sÞ�6

0

B
B
B
B
@

1

C
C
C
C
A

�1
6

; ð16Þ

where t and s denote atoms assigned to resonance i and j,

respectively. To normalize the score, we also compute the

cumulative distances of all assignments to the cross peak

cumdistl;p ¼
X

i;j

Al;pði; jÞdist(i; jÞ�6

 !�1
6

: ð17Þ

This yields the decoy compatibility score as

Dl;pði; jÞ ¼
distði; jÞ

cumdistl;p

� ��6
* +

ð18Þ

Restraint generation

For each cross peak with at least 1 assignment a restraint

can be generated. Excluded are restraints that have been

eliminated (see below), or have at least 1 assignment

Al;pði; jÞ with a volume contribution Wl;pði; jÞ[ 0:1 with

Dseq(i; jÞ\Pðout:min seq sep). The restraint distance is

computed from a conformer as follows

dl;p ¼
X

i;j

H Wl;pði; jÞ � PðVminÞ
� � X

t 2 A ið Þ
s 2 A jð Þ

dist(t; sÞ�6

2

6
6
6
6
4

3

7
7
7
7
5

�1
6

ð19Þ

The corresponding restraint energy is computed using

the ROSETTA flat-bottom potential used previously for

NOE based structure determination (Lange et al. 2012). No

energy penalty is applied for 1:5Å\dl;p\uðl; pÞ, where

u(l, p) denotes the upper-distance bound defined in section

‘‘Peak calibration’’.

For larger distances, the penalty grows first quadratically

and then linearly

Vrestraint ¼
d � u

r

� �2

if d\uþ r
2

d � u

r
� 1

4
otherwise

8
>><

>>:

; ð20Þ

where indices l,p have been omitted for clarity. The

strength of the potential is given by the number of gener-

ated restraints Nrestraints and an overall parameter

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nrestraints

p 	
Pðcst strengthÞ: ð21Þ

If restraints are applied to a conformation in the ROSETTA

centroid representation instead of all-atom representation

all side chain protons are mapped to the CEN interaction

center of the centroid model and the upper bound is padded

by 0, 1, or 2 Å, if 0, 1, or 2 side chain atoms were mapped

to CEN. For cross peaks with multiple assignments, the

maximum number of CEN-mappings (max_maps) for any

of its assignments is used to determine the padding.

Additionally to the padding we reduce the weight of a

mapped restraint relative to the other restraints by setting

rmapped to r, 2r or 4r for 0, 1 or 2 max_maps, respectively.

Peak calibration

To compute the upper-distance bound of a peak from the

peak’s intensity, suitable proportionality constants have to

be defined. We set these in an iterative calibration proce-

dure. To allow for systematic differences in intensity

between different types of protons, we categorize as

backbone, beta, methyl, and sidechain. HA and HN are

backbone, CB-bound protons are beta but for alanine res-

idues, in which case they are considered as methyl. All

other non-methyl protons are considered as sidechain.

Calibration is carried out separately for each peak-list. The

upper distance bound of a cross peak l,p is computed as

ul;p ¼ Il;p

X

i;j

Wl;pði; jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðTiÞCðTjÞ
q� ��1

" #�1
6

; ð22Þ

where Il,p denotes its intensity and C(T) the calibration

constant associated with proton-class T. The calibration

constants for classes backbone and beta are determined by

minimizing the deviation from a structure dependent or

structure independent calibration target.
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For structure independent calibration, constants are

chosen such that the average distance bound reaches 3.8 Å

(specified by Pðcalibration targetÞ). The calibration target

for structure dependent calibration is that 10 % (specified

by P(calibration_target)) of distance bounds are violated by

drestraintðl; pÞ computed from the conformers. As suggested

previously, the calibration constants of classes methyl and

sidechain are set to 3.0 and 1.5 times the calibration con-

stant of backbone and beta, respectively (Herrmann et al.

2002). After structure dependent calibration is finished,

some distance bounds are too tight by a small margin when

compared to the existing conformers. If more than

P calibration:start nudgingð Þ of the conformers are violated

structural strain is avoided by nudging the distance

bounds up in steps of 0.1 Å until less than

P calibration:stop nudgingð Þ of conformers are violated. A

maximum correction of P calibration:max nudgingð Þ of the

original distance bound can be applied in this way and no

correction at all is applied if more nudging than the max-

imum limit would be required.

All generated distance bounds are capped by

P calibration:max noe distð Þ to avoid unreasonably high

values obtained for low-intensity peaks. This parameter can

be overwritten in individual peak-files to account for

increased mixing times (#MAX_NOE_DIST).

Elimination of spurious crosspeaks

Several filters are applied to eliminate crosspeaks that

might be spurious and should not be considered for

restraint generation. Crosspeak l, p is eliminated if none of

its assignments i, j reaches the minimum peak volume

Wl;pði; jÞ[ Pðelim : vminÞ. It is also eliminated if the

number of assignments n(l,p) exceeds

Pðelim : max assignÞ. As suggested previously, peaks are

also eliminated if the network anchoring score of their

assignments remains low (Herrmann et al. 2002).

Accordingly, we compute

Bðl; pÞ ¼
X

i;j

Wl;pði; jÞNl;pði; jÞ ð23Þ

and

Rðl; pÞ ¼
X

i;j

Wl;pði; jÞRoðresnumðiÞ; resnumðjÞÞ; ð24Þ

where Ro(t, s) denotes all network contributions between

residues t, s. The latter is computed as

Roðt; sÞ ¼
X

i 2 R tð Þ
j 2 R sð Þ

X

l;p

Al;pði; jÞNl;pði; jÞ; ð25Þ

where RðtÞ ¼ i : resnum(i) = tf gdenotes the resonances of

residue t. For crosspeak l, p to pass the network filter, we

require either Rðl; pÞ[ Pðnetwork:reswise highÞ or

Rðl; pÞ[ Pðnetwork:reswise minÞ ^ Bðl; pÞ
[ P network:atomwise minð Þ.

Finally, we also eliminate cross peaks whose upper

distance bounds are violated by too many decoys. Since

this filter is dependent on the peak calibration we run 3

rounds of calibration followed by cross peak elimination.

Two different algorithms are used for cross peak violation,

local distance violation and global distance violation, and

their main difference consists of the choice of allowable

violation per distance bound. In the former algorithm the

allowable violation is determined by the variance in dis-

tances within the considered conformations, whereas in the

latter the allowable violation is set globally.

For global distance violation, a cross peak is eliminated

if more than Pðelim:dist violÞ % of the conformers violate

the distance bound by more than PðdcutÞ. For local dis-

tance violation we compute the lower quartile of distances

in the conformers Q1(dl,p) and the crosspeak is eliminated

if Q1ðdl;pÞ[ P local distviol:cutoffð Þ or if Q1ðdl;pÞ[
Pðlocal distviol:cutoff bufferÞ þ ul;p. If the crosspeak is

not yet eliminated, the largest difference dspread is com-

puted which allows to bracket the fraction

Pðlocal distviol:rangeÞ of the conformer’s distances. Using

dspread þ Pðlocal distviol:global bufferÞ as cutoff value for

distance violations we eliminate crosspeaks with more than

Pðelim:dist violÞ of conformers violated.

Integration with RASREC sampling

To generate structural models, we want to use the CS-Rosetta

methodology (Shen et al. 2008). That is, fragments are

selected based on backbone chemical shifts (C;Ca;

Cb;N;HN ;Ha) and sequence information (Vernon et al.

2013) and subsequently assembled using a fragment

assembly approach (Bowers et al. 2000). To this end, a Monte

Carlo optimization is applied, where the moves are given by

replacing all backbone torsion angles within a window of 3 or

9 residues, with the torsion angles of a specific fragment that

has been selected for the specific window by the fragment

picker method (Rohl et al. 2004). During fragment assembly

a low-resolution energy function is applied. Subsequently,

structures are relaxed in ROSETTA’s all-atom energy

function (Kuhlman et al. 2003; Raman et al. 2010a).

Identifying the lowest energy structures using CS-

Rosetta sampling in the rugged landscape created by the

ROSETTA energy function is challenging, and tens of

thousands of conformers have to be generated for adequate

sampling even for relatively small proteins (Shen et al.

152 J Biomol NMR (2014) 59:147–159
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2008). RASREC is an iterative sampling strategy that

generates batches of 200–2,000 conformers and stores the

100–500 all-time best conformers in a structural pool

(Lange and Baker 2012). Simulations of subsequent bat-

ches are seeded with structural information from the

common structural pool, which allows intensifying the

search in the most promising regions of conformational

space. This intensification is necessary to optimize the

ROSETTA all-atom energy sufficiently well for obtaining

high-resolution structures when restraint data is sparse

(Lange et al. 2012).

A flow-chart (Fig. 2) illustrates how automatic NOE

assignment is coupled with RASREC. The NOE assign-

ment algorithm (right side) is run once before RASREC

sampling commences (left side) to yield initial sampling

restraints, as well as a set of filter restraints. The sampling

restraints are used as restraint energy during structure

generation, the filter restraints are used to decide which

newly generated conformers are accepted into the struc-

tural pool and which are discarded.

To avoid distortions and frustrations due to miss-

assigned NOEs, it is beneficial to update the sampling

restraints regularly with the hope that improved structural

information in the pool allows improving the quality of

assignments. For the filter restraints, however, we found

that the opposite is true, and discrimination of native from

non-native conformations actually deteriorates if they are

updated alongside the structural pool. This fact is maybe

not too surprising, as wrong conformations in the structural

pool would disfavor assignment of those restraints that

would penalize the same wrong conformations.

To generate the updated sampling restraints we use

three distinct sets of parameters, which we call Phase I-,

Phase II- and Phase III-parameters (Table 1). Phase

I-parameters are rather permissive, yield highly ambiguous

restraints and do not explicitly eliminate restraints that are

violated by preliminary conformations. Parameters of

Phase II and Phase III are less permissive, do not produce

ambiguous restraints and eliminate restraints that do not fit

to preliminary conformations. In contrast to Phase III,

however, Phase II does not eliminate non-fitting restraints

in structural regions where convergence is still low.

Restraints with\4 residues of sequence separation are not

present in the set of sampling restraints. This choice

reflects our strategy to rely as much as possible on the

short-range information that is encoded in the chemical

shift selected fragments. This renders the approach more

robust against spurious assignments.

AutoNOE-Rosetta calculations of CtR107 and PsR293

In the following, we demonstrate autoNOE-Rosetta on two

protein targets from the North East Structural Genomics

Consortium. Both proteins have an X-ray structure as ref-

erence and their NMR data was taken from a previously

published benchmark study (Mao et al. 2011) made available

through an NESG website (http://psvs-1_4-dev.nesg.org/

MR/dataset.html). After trimming flexible termini (Meth-

ods) the lengths are 118 and 147 residues, for PsR293 and

CtR107, respectively. The targets were chosen from our full

benchmark of 50 proteins published in Ref. (Zhang et al.

2014) to highlight how the new method behaves on large

proteins with challenging input data. We derive that the input

data is challenging from the fact that CYANA does not yield

good structures with this data. Moreover, we selected these

two data sets, because an Xray structure is available. The

reader should be aware that the results presented here are

cherry-picked from the larger benchmark (Zhang et al. 2014)

and are not representative for overall behavior of CYANA or

autoNOE-Rosetta. The purpose of the following analysis is

merely to illustrate the progress of the algorithm throughout

its different stages and to give some insight into algorithmic

choices that have been made.

For PsR293 4 peak lists are available, a 4D methyl–

methyl, a 3D aliphatic 13C, a 3D aromatic 13C, and a 3D

Fig. 2 Illustration of the integration of the new NOESY-module with

the RASREC module of Rosetta3. The left-most block with dark blue

background reflects *200 worker processes that run individual

Rosetta fragment assembly and relax calculations. Sampling in these

is biased by the sampling restraints generated by the NOESY Module

(right). A pool of conformations is filled and updated with confor-

mations generated by the Rosetta sampling processes. The confor-

mations in the pool will be ranked by a combination of Rosetta score,

experimental restraints (RDC and chemical shifts), and the filter

restraints generated by the NOE module. The 30 best-ranked

structures in the pool are used as structural input for subsequent

rounds of NOE assignment, and thus influence the sampling

restraints. Depending on the strange of sampling in the RASREC

module (Stage I–VIII) different parameter sets for NOE assignment

are used (Phase I–Phase III)
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1H-15N HSQC-NOESY. In total 2114 4D and 4247 3D

peaks. For target CtR107, a single 3D peak-list is available

with both 13C and 15N NOE cross peaks comprising 7,180

entries, of which 3,705 have non-zero intensity. Note, that

the program ignores zero-intensity peaks. Chemical shift

assignments are downloaded from the BMRB and CYANA

3.0 specifies their completeness to 95.9 and 93.1 % for

PsR293 and CtR107, respectively.

The autoNOE-Rosetta calculations converge for both

targets (Fig. 3) to accurate structures that both superimpose

with 1.9 ± 0.2 Å Ca-RMSD on to the respective X-ray

structure. Assignment and structural statistics support that

high-quality NMR solution structures have been obtained

(Table 3). As shown in Fig. 3, multiple RASREC stages

are required for both targets to converge to the correct fold.

Accordingly, the Ca- RMSD to the reference structure

improves stage to stage (Fig. 4), with the largest

improvement concentrated on Phase I (stages I–IV). Phase

II improves structural models for these targets, but Phase

III (stage VII–VIII) yields a further refinement, which is

necessary to reach atomic accuracy.

As pointed out above, the CANDID algorithm (Herr-

mann et al. 2002) is quite similar to the automatic NOE

assignment employed here. CANDID has been the basis of

popular programs for automatic NOE assignment, such as

CYANA and UNIO. The main difference between auto-

NOE-Rosetta and CANDID is thus the different methods

employed for structural sampling.

To illustrate the benefit from RASREC-ROSETTA sam-

pling over torsional molecular dynamics, we have also run

CYANA (Version 3.0) to calculate structures for PsR293 and

CtR107 from the same input data. As shown in Fig. 4f,

CYANA converges for PsR293 to a tight structural bundle

(average backbone RMSD to mean: 0.6 Å) but the resulting

structure is only accurate in parts, and the overall Ca-RMSD

with respect to the Xray structure is with 10 Å rather high.

Accordingly, typical quality criteria for successful CYANA

calculations (P. Güntert, private communication) are bor-

derline bad: after cycle 1, the target-function has a value of

211.83 and the average backbone RMSD to the mean of

3.4 Å (both rather high). For CtR107 (Fig. 4l), CYANA does

not converge and yields an average backbone RMSD to the

mean of 7.1 and 8.4 Å after cycle 7, when run with and

without RDC data. As the CtR107 data set contained many

zero-intensity peaks, which are ignored by auotNOE-

Rosetta, we also tested whether the bad performance of

CYANA resulted from these zero-intensity peaks and

removed them manually. The calculation now converges in

cycle 7 (cycle 1) to a bundle with an average RMSD of 2.2 Å

(4.3 Å) to the mean structure and target-function values of

1.2 (25.9). The final structures, however, do not superimpose

well with the reference structure (Ca-RMSD 7.1 ± 0.4 Å).

The results obtained with CYANA illustrate the diffi-

culty of obtaining reasonable NOE assignments from the

presented data sets with available methods. Apparently, the

computational investment for the enhanced structural

modeling of RASREC-ROSETTA has paid off and a high-

quality structure can be obtained despite challenging input

data. A more comprehensive benchmark of 50 data sets has

been carried out subsequently, and its results confirm these

observations on a broad basis (Zhang et al. 2014).

Analysis of NOE restraint quality at intermediate stages

of AutoNOE-Rosetta calculations

To illustrate the progress in automatic NOE assignment

during autoNOE-Rosetta, we have rescored all the decoys

generated throughout the RASREC calculation with NOE

restraints derived from assignments at its various stages.

This procedure reveals the energy landscape generated by

the restraints. Note, however, that the near-native confor-

mations used here for rescoring are not yet sampled at early

stages of RASREC but will be generated only in later

stages (Fig. 4). Figure 5 shows the correlation between Ca-

Table 2 Glossary of symbols used throughout the manuscript

Symbol English definition

gl,p
d Frequency in dimension d of peak p in peak-list l

di ith resonance assignment

AðiÞ Set of atoms assigned to resonance i

Dl(d, i, j) Return proton or label atom depending on peak-list

dimension d

Ml,p
d (i) Match of resonance i to peak gl,p at dimension d

Al,p(i, j) 1 if peak gl,p can be assigned to proton resonances i and

j (respecting any label resonances L(i) if 3D or 4D peak)

Wl,p(i, j) Volume contribution of resonance assignment i,j to peak

gl,p

Cl,p(i, j) Chemical shift score of resonance assignment i,j to peak

gl,p

Dl,p(i, j) Decoy compatibility score of resonance assignment i,j to

peak gl,p

Sl,p(i, j) Symmetry score of resonance assignment i,j to peak gl,p

Vl,p(i, j) Covalent compliance score of resonance assignment i,j to

peak gl,p

Nl,p(i, j) Network anchoring score of resonance assignment i,j to

peak gl,p

dist(i, j) Average distance (r-6-weighting) between atoms AðiÞand

AðjÞ
dl,p Measured distance in conformation given the

(ambiguous) assignments to peak gl,p

ul,p Calibrated upper bound of peak gl,p

B(l, p) Cumulated network anchoring score of peak gl,p

R(l, p) Cumulated residue-wise network anchoring of peak gl,p

Q1(x) Lower quartile of distribution in observable x

See text for precise definitions
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RMSD and NOE restraint energy for CtR107 with (right

panels) and without (left panels) random restraint combi-

nation (section ‘‘Restraint Combination’’). The corre-

sponding plots for target PsR293 look very similar (Supp.

Figure S1).

Remarkably, the initial restraints (panel a), show a

good correlation with Ca-RMSD, and just selecting the

lowest energy conformations would yield accurate

structures (*2.0 Å). However, one also notes that the

lowest energy is rather high with *1,400 Rosetta energy

units (REU). This high energy results from spurious

NOE restraints that violate the correct conformation. The

high offset in the energy illustrates the main problem

with these initial restraints: If used for structure gener-

ation, they result in strong frustration and distortion. As

is evident from Fig. 4, RASREC cannot generate con-

formations close to the lowest scoring decoys at *2.0 Å

RMSD in initial stages.

To avoid the strong frustration in the initial restraints we

use restraint combination (Herrmann et al. 2002) for

sampling in Phase I (Methods). Indeed, this drastically

reduces the NOE restraint energy of the near-native con-

formations to *100 REU (Fig. 5e–f). This reduction of

distortive effects by factor 10–20 is sufficient for RASREC

to converge towards near-native conformations by the end

of stage IV (Fig. 4). To refine the structures further, how-

ever, random restraint combination is not sufficient and

erroneous restraints have to be removed properly. Thus, in

Phases II and III restraints are explicitly removed, if they

are incompatible with the preliminary structures. This

reduces the minimum energy to 5.1 and 1.5 REU, for Phase

II and III, respectively (Fig. 5c–d).

Continuing to combine restraints even in Phases II and

III would result in significant loss of discriminative power

of the NOE restraint energy (Fig. 5g–h). Accordingly, we

switch off restraint combination during Phases II–III and

use the NOE restraints directly for sampling. An important

observation from Fig. 5, is that the discrimination of con-

formations is best achieved with the initial assignments that

were obtained without any feedback from structures.

Accordingly, this set of restraints is used to select those

conformations that are retained in the RASREC-pool for

resampling. The gradual convergence towards the correct

fold during RASREC stages I–IV (Figs. 3, 4), is thus

mainly driven by the discriminative power of the initial

NOE assignments.

b Fig. 3 Structural ensembles obtained with automatic NOE assign-

ment. The reference structure (dark gray) is superimposed with NOE-

based models depicted with a color gradient reflecting the sequence

position from N-terminus (blue) to C-terminus (red). a–e, g–

k Ensembles during autoNOE-Rosetta calculation of targets PsR293

(a–e) and CtR107 (g–k), respectively. Shown are (top to bottom) the

30 lowest energy conformations after RASREC stage I, stage II, stage

III, stage IV and stage VIII, respectively. f, l Final CYANA models of

PsR293 (f) and CtR107 (l), respectively. Note, that a different

orientation than in (a–e) or (g–k), respectively, has been chosen for

these panels
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Conclusions

We have implemented an algorithm for automatic NOE

assignment in ROSETTA and coupled it with the iterative

conformational sampling method RASREC. RASREC has

been shown previously to yield highly accurate structures

even from sparse NMR data (Raman et al. 2010b; Lange

et al. 2012), but required assigned NOEs (Raman et al.

2010a) or that an initial fold can be determined with

CYANA (Lange et al. 2012). By tightly coupling automatic

NOE assignment (as in CYANA) with RASREC we were

able to unlock synergies between both approaches and

make a significant step in automatic NOE assignment.

Here, the method has been shown to yield accurate struc-

tures (1.9 Å) for two data sets of larger proteins, for which

CYANA does not yield an accurate initial fold. Thus the

method considerably extends the range of data sets for

which automatic NOE structure determination leads to

accurate results. In line with these results, a more com-

prehensive benchmark on 50 NOE data sets shows signif-

icantly improved performance for the new method, an

improved accuracy compared to PDB-deposited NMR

structures and good performance with automatically picked

peak-lists (Zhang et al. 2014). The method is available

within the ROSETTA3 software suite (www.rosetta

commons.org) and will be released in versions 3.6 and

higher. We recommend running autoNOE-Rosetta using

the supporting tool-chain (CS-Rosetta toolbox version 2.0

or higher). The toolbox, additional documentation and user

support can be found on the CS-Rosetta portal (www.

csrosetta.org).

Methods

Automatic NOE assignment of PsR293 and CtR107

Fragments were picked by the Rosetta3 fragment picker

(Vernon et al. 2013) using the chemical shift data from the

BMRB. Homologous proteins using an e-value cutoff of

0.05 (sequence identity [20 %) were excluded from

Table 3 NMR and structural statistics for final autoNOE-Rosetta

models of targets PsR293 and CtR107

PsR293 CtR107

Peaks and assignments

Picked 6,870 7,180

Zero intensity 0 3,400

Diagonal assignment 418 75

Assigned 3,658 2,762

With C5 initial assignments 2,497 2,271

Unassigned… 2,784 1,012

Without assignment possibility 1,925 208

Eliminated due to Network 6 6

Eliminated due to MinPeakVol 90 72

Eliminated due to MaxAssign 277 383

Eliminated due to DistViol…. 486 343

Between 0.1 and 0.5 A 37 22

Between 0.5 and 2.0 A 130 116

Between 2.0 and 5.0 A 164 89

Above 5.0 A 155 116

Distance restraints

Intraresidue 1,729 1,535

Sequential (|i - 1| = 1) 753 670

Medium-range (1 \ |i - j| B 4) 462 145

Long-range (|i - j| C 5) 714 412

Other restraints

Total HN RDCs 0 183

Dihedrals restraints (used as

fragments)

Residues with good talos prediction 98 117

Violations (RMSD, SD)

Distance restraints (CING) 0.04 ± 0.02 0.08 ± 0.014

Ramachandran statistics (CING)

Residues in most favored regions 89.9 % 92.8 %

Residues in allowed regions 10.0 % 6.9 %

Residues in generously allowed

regions

0.0 % 0.3 %

Residue in disallowed regions 0.1 % 0 %

Average RMSD to mean structure (Å)

Backbone atoms (CING) 0.71 ± 0.23 1.13 ± 0.22

Heavy atoms (CING) 1.08 ± 0.26 1.46 ± 0.19

Statistics calculated with the CING-Server (Doreleijers et al. 2012)

are marked as such

Phase I Phase II Phase III 

Fig. 4 Gradual improvement of preliminary models in autoNOE-

Rosetta. Shown are the median (black), lower- and upper quartile

(dashed, blue and red, respectively) and the lowest and highest (solid,

blue and red, respectively) RMSD of the 30 lowest energy models in

RASREC after stages I–VIII with respect to the reference structure.

At final the RMSD statistics of the 10 lowest models selected purely

by ROSETTA energy from the stage VIII RASREC pool (comprising

100 models) are shown
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fragment picking. After removal of a C-terminal His-Tag,

the target PsR293 (PDB accession 3h9x) was 118 residues

long. For target CtR107 the first 8 residues, as well as the

C-terminal His-Tag are removed due to flexibility

(according to TALOS ? computed RCI-S2 \ 0.7). The

remaining sequence from residue 9-155 of the NMR con-

struct is 147 residues long. AutoNOE-Rosetta has been run

on both targets with Pðcst strengthÞ ¼ 25 using 4 HPC

compute nodes equipped with four 2.6 GHz AMD Opteron

processors (12 core) each. For CtR107, the structure cal-

culation was completed in 5 h, and PsR293 in 2.5 h.

AutoNOE-Rosetta

RASREC structure calculations (Lange and Baker 2012)

were run with a reduced pool-size of 100 conformers

(command-line flag -iterative:pool_size 100) compared to

the standard protocol (Lange and Baker 2012). This

speeds up convergence considerably and reflects the

reduced need for structural exploration when NOE data

is present. Recombination-Stages were terminated when

the acceptance ratio into the pool dropped below 10 % (-

iterative:accept_ratio 0.1) and the cycle factor was set to

2.0(-increase_cycles 2). Chemical shift pseudo-energies

contribute to RASREC pool evaluation with a weight of

5.0 (van der Schot et al. 2013). The original RASREC

algorithm comprised of stages I–VI. The first four stages

are run with Phase I parameters for NOE assignment.

Subsequently, we re-run stages III and IV of the original

RASREC algorithm with Phase II parameters, followed

by stages V and VI with Phase III parameters. Renum-

bering the stages we thus get stages I–VIII as shown in

Fig. 2.

Restraints in RASREC

Restraint combination

Restraints are combined into random pairs to avoid dis-

tortion due to spurious assignments as suggested previously

(Herrmann et al. 2002). For each individual trajectory of

conformational sampling (i.e., many thousand times), the

restraint combination is re-randomized. To this end,

restraints between residues i and j are first classified

according to their sequence separation |i - j| into restraints

with |i - j| \ 5, 20, and 50 and |i - j| C 50. Subsequently,

pairs are drawn randomly from the restraints of the same

sequence separation class and combined into a new

ambiguous restraint. If the number of restraints of a

sequence separation class is odd, the last remaining

unpaired restraint is combined with one of the restraints

already used in that class. For ambiguous restraints with

multiple possible values for their sequence separation, one

of the possible values is chosen at random.

Fig. 5 Automatic NOE

restraints obtained at different

phases of the structure

calculation with protein target

CtR107 (Suppl. Figure S1 for

target PsR293). All energies

within 50 Rosetta Energy Units

(REU) of the lowest energy are

plotted in yellow. The lowest

energy conformation is marked

with a red-circle (multiple

circles if minimum is

degenerate). a–d restraints are

used individually as in Phase II

and Phase III. e–h In Phase I of

the structure calculation,

restraints are combined in

random pairs for each individual

decoy. To simulate this effect in

this rescoring exercise, ten

different sets with NOE

restraints randomly paired are

obtained, and the mean energy

across the ten pairings is

computed for each conformer
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Sequence separation

Restraints with a high sequence separation can frustrate

sampling in Rosetta fragment assembly considerably (Rohl

and Baker 2002). To mitigate this effect, all restraints with a

sequence separation i� jj j[ DSS are switched off at first.

Starting with DSS = 3 the threshold is ramped up during

fragment assembly such that all restraints are activated only

in the last 25 % of the sampling cycles of a fragment

assembly trajectory. For ambiguous restraints with multiple

possible values for their sequence separation, a sequence

separation is chosen randomly for their classification each

time a fragment assembly trajectory is started. Broken-chain

fold-trees (Bradley and Baker 2006) are considered and an

effective sequence separation is computed which reflects the

shortest path between residue i and j of the restraint in the

chosen broken-chain fold-tree (Lange and Baker 2012).

Redundancy removal

Automatic NOE assignment generates a large number of

restraints, and we have observed a considerable slow-down

of fragment assembly calculations in cases with large peak-

lists. In autoNOE-Rosetta the number of restraints is thus

drastically reduced during fragment assembly by removing

redundancy with the following scheme:

A residue–residue contact matrix is initialized by setting

elements to the following values: 2, for residue pairs with at

least one unambiguous restraint between them, and 1, for

residue pairs that are part of an ambiguous restraint and 0, for

residue pairs that are not part of any restraint. Now restraints

are drawn in random order without replacement. If an

ambiguous restraint is drawn, it is accepted if any of the

corresponding matrix elements are still 1. If accepted, the

elements are set to 3. If an unambiguous restraint is drawn, it

is accepted if the corresponding matrix element is either 2 or

3, and the corresponding matrix element is set to 4. This

procedure makes certain that each residue pair is restrained

by at most one unambiguous restraint and that each ambig-

uous restraint contains at least one sub-restraint that shares

its residue pair with at most one other unambiguous restraint.
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